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The analog simulation of problems of energy and mass transfer on two
RC networks with various boundary conditions is described, Solutions
are presented for one- and two-dimensional problems, together with
a solution for contact problems.

The analytic solution of problems of energy and
mass transfer with complex initial and boundary con-
ditions often presents insuperable mathematical dif-
ficulties, since these problems reduce to mathematical
models, involving complex second-order partial dif-
ferential equations of parabolic type. These equations,
together with boundary conditions of various kinds,
have been solved for certain important particular cases
by A. V. Luikov and his school [1].

The present article is devoted to the electrical
analog simulation of differential equations of energy
and mass transfer of the type
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using RC networks.

The electrical model was constructed on the basis
of the MN-7 analog computer.

§1. We first present the solution of the one-dimen-~
sional problem. The electrical circuit is shown in
Fig. 1. On network I-I we measured the voltage v, the

analog of the temperature t; on network II-II the voltage
w, the analog of the mass transfer potential 6. I we
write Egs. (1) in dimensionless coordinates [3], the
system takes the form
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The resistances Ry and R, and the capacitances C,
Cy, and C, were selected so as to ensure the equality of
the Fourier, Luikov, Kossovich, and Posnov numbers:
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Ko* =e¢rc, 0%/ct* = Ce*/(Cy + C) v¥,

Pn = 8 #*/0* = CRw*/(C, + C) Ryw*. (3)

The boundary conditions are as follows: at the
lower edge of the model
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Fig. 1. Circuit of electrical model and graphs of T and ® vs. Fo at
various points of the medium in the one~dimensional problem.
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The initial conditions are
T(X; 0)=0, 8(X; 0)=0, (6)

which corresponds to zero charge on all the capacitor
plates. The experiment was carried out by supplying
an electric potential v* =100 V to the point Ay and a
potential w* =—100 V to the point B, at time 7, = 0.
The time dependence of the relative temperature T
and the mass transfer potential ® is shown in Fig. 1
for various points of the medium: the electric poten-
tial v =f(Te), simulating the temperature T, was
measured at points 1, 3, 5, and 8 of network I-I, and
w =f(7e), simulating the mass transfer potential, was
measured at points 9, 11, 13, and 16 of network II-II.
It is clear from the graph ® = f(Fo) that all the curves
asymptotically approach ® = —~1, while all the T =
= f(Fo) curves asymptotically approach T =1, The
closer the point of network I-I to the boundary point
Ay, the more rapid the transient process and, con-
versely, the closer the point of network II-II to the
point By, the more prolonged the transient process.
We will consider the variation of ® = f(Fo) at point
9. At first, the potential ® increases, reaching a
maximum at Fo = 0.15, although a negative potential
® = ~1 was connected at the boundary of network II-II.
This behavior of the curve is attributable to the fact
that at the corresponding point 1 of network I-I the
derivative 8T/8Fo takes a large value, and since in
the neighborhood of point 9 at small Fo, V?® is rela-
tively small as a result of the remoteness of point 9
from point By (where ® = —1), at small Fo the deriv-
ative 9®/0Fo takes positive values. If V2@ were
equal to zero, then

99 _ _ LuPn__oT
dFo 14 LuPnKo* 8Fo’

which follows from Eqs. (2).

At Fo > 0.15 the effect of dv/dr,, transmitted
through capacitors C from network I-I to network
II-1I, becomes less than the effect of the decrease of
potential due to the boundary conditions at point B,.
Normally this corresponds to a change in the mass
transfer potential due to thermal diffusion. Similar
processes take place at point 8 of network I-I, but
here, at small Fo, the "temperature" decreases ow-
ing to the expenditure of a certain amount of thermal
energy on phase transitions.

§2. In order to check the experimental results we
solved the boundary value problem analytically by
means of a Laplace transformation of (2) with respect
to the variable Fo.

The transforms were found by solving a system of
ordinary differential equations in the variable X, after
which the inverse transforms T and ® were determined
by means of the expansion theorem. After carrying
out the necessary calculations, we obtained the results
in the form of rapidly converging series. At the values
Ko* = 0.333, Pn = 0.666, and Lu = 0.321, correspond-
ing to the experiment described above, we obtained
the following final answer:

T(1; Fo) =
= 1—0.1264exp (—0.73F0) — 1.293exp (—2.52F0) -
+ 0.0812exp (— 6.91F0),
0 (0; Fo) =
== —1-+1.555exp (—0.73F0) — 0.3148exp (—2.52F0) —
—0.1878exp (—6.91F0).

From these formulas we calculated the values of T
and ® for Fo = 0.1, 0.3, 0.5, and 1.0 (see Fig. 1). A
comparison of the experimental results and the ana-
lytic calculation gave very good agreement.

83. We now present the results of an analog simu-
lation of the two-dimensional problem.

The RyCy, RyC,, and C networks, consisting of 52
cells each, were mounted on three textolite boards.
The corresponding nodes of networks I and II and
capacitors C were connected by means of plug-type
connectors. The model was square-shaped with a
rectangular notch cut out at one corner (see Fig. 2).

One series of experiments consisted in the sudden
supplying of a constant electric potential v* = 100 V
at the boundary A;B; of network I-I and a potential
w* = —100 V at the boundary A; B, of network II-II
with zero initial conditions. As the characteristic
dimension we took the distance between points A, and
E; (the length of eight cells). The criteria Ko* = 0,285,
Pn =0.571, Lu = 0.3065 corresponded to the electrical
network parameters Ry = 180 kQ; R, = 360 kQ; Cy =
=0.25-82 =16 uF; Cy = 0,5-8 =32 F; C=0.1-82=
= 6.4 uF,

Te Te

Fo = = R
Ri(C+C) 4.08

where To 18 the time of the transient process on the
electrical model, sec.

The graphs of the dimensionless T and @ versus
Fo at various points of the model are similar in char-
acter to the graphs in Fig. 1. The distribution of T
and @ in the two-dimensional region at ¥o = 0.5 is pre-
sented in Fig. 2. Curves of the family T = const and
® = const make it possible to construct the heat and
mass flow lines. The greatest values of the tempera-
ture mass transfer potential gradients were observed
at the instant indicated in the neighborhood of point D.
It is clear from Fig. 2 that on part of the area the
potential ® assumed positive values owing to thermal
diffusion. In solving two-dimensional problems of
energy and mass transfer it is possible to use the net-
works of existing electro-integrators.
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Fig. 2. Distribution of potentials T and @ at the
moment Fo = 0.5 in the two-dimensional problem.

§4. By using an electrical model it is possible to
find simplified formulas for determining the potentials
T and ® for various problems. As an example, we
present an approximate formula, in deriving which it
is assumed that the distributed resistances and capaci-
tances in networks I and II and the intermediate net-
works are replaced by lumped elements. This assump~-
tion is useful in studying the processes in thin-walled
parts, and also at small Biot numbers Biq and Biyy,,
when the coefficients oq and oy, can be assumed
constant and when the regular regime rapidly sets in.

We will consider the process of heat and mass
transfer in an infinite plate with initial conditions
T(X; 0) = ®(X; 0) = 0 and boundary conditions

oT (1; Fo)
0X

2@(1; Fo)
0X

+ Bi, [T (1; Fo)—1] =0,

-+ Bi,, [0 (1; Fo)—1] = 0.

Boundary conditions of the third kind were simulated
by connecting additional resistances Ry, and Ry,, at
the surface of the model, such that Big = Rlle/RbZ,
Bipy = Rzlc/Rb2 (le is taken equal to 1). Solving the
differential equations in the potentials T and ® at the
center of the board by an operational method, we
obtain the formulas

b1+ Lu (14 Ko¥)

1 s; Fo) —
b s exp (s; Fo)
*
_ _buse -+ Lu(14 Ko¥) exp (s, Fo),
by (52— 1)
*
0— 1. 1+ siby + LuPn (14 Ko*¥) exp (s, Fo) +
bq (31_52)
4 Ibsbg+ LuPn(+ Ko 0o po
by (s2—s1)

1 1
b,=1+——, b =14+—, E= *
7 s Bi m + B £ = PnKo* + (1/Lu),

q ) ™m

: Lu [ (b, b ® 4b
Rl ) K VA 2R e 2o

§5. Analog simulation can be used to solve so-called
contact problems, i.e., problems with discontinuous
initial conditions. Physically, this means the contact
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of two media along a certain boundary. At time 7 =0,
when contact occurs, the fluxes j, and j,, atthe contact
points are infinitely large, but even after a very short
interval of time both the temperatures and the mass
transfer potentials in the contact zone are equalized
and at 7 > 0 the fluxes vary continuously. Analytic
solutions have been published for certain special cases
of contact problems, but even in the simplest cases the
solution leads to cumbersome calculations, while for
complex configurations and arbitrary temperature

and mass distributions an analytic solution is generally
impossible. Therefore in our case we decided to solve
contact problems by analog simulation.

We will consider, as an example, the solution of
a one-dimensional contact problem. Let there be two
infinite porous plates of identical thickness ! = 1 with
Ko* = 0.333, Lu = 1,025, Pn = 0.182.

The initial values of T and @ for the first plate are
given by Ty =1, 04 =-1, and for the second by T, =
=0, 0y, = 0. At the boundary DE of the first plate
the temperature and mass transfer potential are kept
constant: T(0; Fo) = 1 and ®(0; Fo) = —1. At the sur-
face AB of the second plate we have

oo _, 99
oxX T oax

Let these two plates be brought into close contact
at the instant 7 = 0. It is required to find the sub-
sequent behavior of the functions T (Fo) and ®(Fo) at
various points within the thickness of the plate.

The network of the electrical model used to solve
this problem is shown in Fig. 3. To points D and E
we supplied constant voltages v* = 100 V and w* =
= —100 V, At the moment Fo = 0 the contacts K; and
K, are simultaneously closed. The lumped network
parameters are equal to: Ry = 110 k&2, R, = 105 k{2,
C =0.25 uF, C; =05 uF, Cy =1.0 uF. If 7¢ is mea-
sured in seconds, then
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Fig. 3. Circuit of electrical model and graphs

showing the variation of the parameters T, ® =

= f(Fo) for various points of the medium in a
contact ﬁl'oblem.



The coefficient 64 in the denominator shows that
there are 8 lumped capacitors and resistors per unit
length of the model.

Graphs showing the variation of the relative tem-
perature T at points 2, 7, 2a, and 7a and the poten-
tial @ atpoints 10, 15, 10a, and 15a are presented in Fig, 3.

§6. These models can also be used to solve prob-
lems with boundary conditions of the second kind,
which are of very great practical importance. For
this purpose, to each point of the model simulating
the surface of the medium it is necessary to supply
certain currents Ij and I from high-voltage (v and
W) potentiometers across sufficiently large resis-
tances Ry, and sz. In this way the normal deriv-
atives 8 T/9N and 5®/8N, which depend on the surface
coordinates, are specified at the boundaries of net-
works I and II.

If the criteria Ki, and Ki, depend on the potentials
T and @ at the surface of the model and on Fo, then by
means of a system of amplifiers it is possible to con-
struct a circuit in which the voltages v, and w, depend
in a certain way on the above-mentioned quantities.

NOTATION

T is the time; aq is the thermal diffusivity; ¢ is
the ratio of the change of mass due to phase transfor-
mation in the neighborhood of some point to the total
change of mass; r is the specific heat of phase transi-
tion; Cm is the isothermal mass capacity; cy is the
heat capacity; ap, is the mass diffusivity; d4 is the
thermal. gradient coefficient; I is the characteristic
linear dimension; t*, ®* are certain specific tempera-
ture and mass transfer potential drops; 7, is the model
time.
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